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Joukowsky and Betz approaches

V. L. OKULOV† AND J. N. SØRENSEN
Department of Mechanical Engineering and Center for Fluid Dynamics, Technical University
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On the basis of the concepts outlined by Joukowsky nearly a century ago, an analytical
aerodynamic optimization model is developed for rotors with a finite number of
blades and constant circulation distribution. In the paper, we show the basics of
the new model and compare its efficiency with results for rotors designed using the
optimization model of Betz.

1. Introduction
In the history of rotor aerodynamics two ‘schools’ have dominated the conceptual

interpretation of the optimum rotor. In Russia, Joukowsky (1912–1918) defined the
optimum rotor as one having constant circulation along the blades, such that the
vortex system for an Nb-bladed rotor consists of Nb helical tip vortices of strength Γ

and an axial hub vortex of strength −NbΓ . A simplified model of this vortex system
can be obtained by representing it by a rotating horseshoe vortex (see figure 1a).
The other school, which essentially was formed by Prandtl and Betz (see Betz 1919),
assumed that optimum efficiency is obtained when the distribution of circulation
along the blades generates a rigidly helicoidal wake that moves in the direction of its
axis with a constant velocity. Betz used a vortex model of the rotating blades based
on the lifting-line technique of Prandtl in which the vortex strength varies along the
wingspan (figure 1b). This distribution, usually referred to as the Goldstein circulation
function, is rather complex and difficult to determine accurately (Goldstein 1929). In
both cases only conceptual ideas were outlined for rotors with finite number of
blades, whereas later theoretical works mainly concerned actuator disk theory. Hence,
in practice, the blades are modelled using blade–element momentum (BEM) theory,
corrected by the tip correction of Prandtl (see e.g. Glauert 1935).

Recently, in Okulov & Sørensen (2008a, 2008b), we have derived an analytical
solution for rotors with Goldstein distributions of circulation along the blade (Betz
rotor) using a new analytical model of the velocity field induced by helical vortices
(Okulov 2004). In the present work we exploit the analytical model further to develop
a vortex theory of an ideal rotor based on the concepts outlined by Joukowsky using
constant circulation along the blades (Joukowsky rotor). Both solutions enable for
the first time to compare the theoretical maximum efficiency of wind turbines with
Betz and Joukowsky rotors.

† Email address for correspondence: vaok@mek.dtu.dk



498 V. L. Okulov and J. N. Sørensen

U∞

(a) (b)

U∞(1 – υ)

U∞(1 – υ)

U∞(1 – w)

U∞
Ω0 Ω0

Γ
Γ

Γ

2Γ

Γ

Figure 1. Sketch of the vortex system corresponding to lifting line theory of the ideal
propeller of (a) Joukowsky and (b) Betz.
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Figure 2. Velocity and power triangles in the rotor plane of (a) Joukowsky rotor and (b)
Betz rotor.

2. Vortex theory for rotors with a finite number of blades
In the vortex theory, each of the blades is replaced by a lifting line on which the

radial distribution of bound vorticity is represented by the circulation Γ = Γ (r), which
is a function of the radial distance along the rotor blade. This results in a free vortex
system consisting of helical trailing vortices, as sketched in figures 1(a) and 1(b). Using
the vortex theory, the bound vorticity serves to produce the local lift on the blades
while the trailing vortices induce the velocity field in the rotor plane and the wake.
As illustrated in figure 2 the velocity vector in the rotor plane is made up by the rotor
angular velocity Ω0, the undisturbed wind speed U∞, the axial and circumferential
velocity components uz0

and uθ0
, respectively, induced at a blade element in the rotor

plane by the tip vortices, and vθ0
, the circumferential velocity induced by the hub

vortex. The fundamental expressions for the forces acting on a blade (figure 2) is most
conveniently expressed by the Kutta–Joukowsky theorem, which in vector form reads

dL = ρV 0 × Γ dr, (1)

where dL is the lift force on a blade element of radial dimension dr , V0 is the resultant
relative velocity and ρ is the density of the air. From (1), we can write the local torque
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dQ of a rotor blade as follows:

dQ = ρ Γ (U∞ − uz0
) r dr. (2)

Integrating (2) along the blades and summing up, we get the following expression for
the power output, P = Ω0Q:

P = ρNb Ω0

∫ R

0

Γ (U∞ − uz0
) r dr, (3)

where R is the radius of the rotor.
To determine the theoretical maximum efficiency of a rotor, the power coefficient

is introduced as follows:

CP = P/
(

1
2
ρπR2U 3

∞
)
. (4)

The maximum power that can be extracted from a stream of air contained in an area
equivalent to that swept out by the rotor corresponds to the maximum value of the
power coefficient. This is determined as a function of the tip speed ratio

λ0 = Ω0R/U∞. (5)

To determine the velocity field vθ0
, uz0

and uθ0
induced at a blade element in the

rotor plane, the free half-infinite helical vortex system behind the rotor is replaced by
‘an associated vortex system’ that extends to infinity in both directions. Neglecting
deformations or changes in the wake, the vortex system is uniquely described by the
far wake properties in the so-called Trefftz plane, which per definition is the plane
normal to the relative wind far downstream of the rotor. Thus, in accordance with
Helmholtz’ vortex theorem, the bound circulation Γ about a blade element is uniquely
related to the circulation of a corresponding vortex in the Trefftz plane. By symmetry,
it is readily seen that the induced velocities at a point in the rotor plane (figure 2)
equals half the induced velocity at a corresponding point in the Trefftz plane (see e.g.
Joukowsky 1912–1918; Betz 1919):

vθ0
= 1

2
vθ , uθ0

= 1
2
uθ and uz0

= 1
2
uz. (6)

3. Solution of Joukowsky rotor
In the vortex theory of the Joukowsky rotor (Joukowsky 1912–1918), each of the

blades is replaced by a lifting line about which the circulation associated with the
bound vorticity is constant, resulting in a free vortex system consisting of helical
vortices trailing from the tips of the blades and a rectilinear hub vortex. The vortex
system may be interpreted as consisting of rotating horseshoe vortices with cores of
finite size, as sketched in figure 1(a) which is reproduced from the original drawing
of Joukowsky. The ‘associated vortex system’ consists of a multiplet of helical tip
vortices of finite vortex cores (ε � R) with constant pitch h and circulation Γ . The
multiplet moves downwind (in the case of a propeller) or upwind (in the case of
a wind turbine) with a constant velocity U∞(1 ± υ) in the axial direction where υ

denotes the difference between the wind speed and axial translational velocity of the
vortices. Denoting the angle between the axis of the tip vortex and the Trefftz plane
as Φ (see figure 2a), the helical pitch of the multiplet is given as

h = 2πR tan Φ or l/R = h/2πR = tan Φ. (7)

The free vortex lines are made up by vortex cores of finite size in order to avoid
singular behaviour. The vortex cores are collinear to the axes of the helical lines
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and their vorticity is assumed to be uniform and densely distributed across the core
cross-section. According to Okulov (2004), in cylindrical coordinates (r, θ, z), the
components of fluid velocity induced by Nb helical vortices in the domain outside the
vortex cores are given as

uz(r, χ) =
NbΓ

2πl

{
1

0

}
− Γ R

πl2

Nb∑
n=1

∞∑
m=1

m

{
Im(mr/l)K ′

m(mR/l)

I ′
m(mR/l)Km(mr/l)

}
cos(mχn), (8)

uθ (r, χ) =
NbΓ

2πr

{
0

1

}
+

Γ R

πrl

Nb∑
n=1

∞∑
m=1

m

{
Im(mr/l)K ′

m(mR/l)

I ′
m(mR/l)Km(mr/l)

}
cos(mχn), (9)

where Im(x) and Km(x) are modified Bessel functions; χ = θ − (z/l) and χn = χ +
(2π(n − 1)/Nb). When the first two dominant singularity terms are extracted, (8) and
(9) are reduced to the following rough-and-ready formulae (Fukumoto & Okulov
2005):

uz(r, χ) =
Γ

2πl

({
Nb

0

}
+

4
√

l2 + R2

4
√

l2 + r2

Nb∑
n=1

Re

[
±eiχn

e∓ξ − eiχn

+
l

24

(
3r2 − 2l

(l2 + r2)3/2
+

3R2 − 2l

(l2 + R2)3/2

)
ln(1 − eξ+iχn)

])
, (10)

uθ (r, χ) =
Γ

2πr

({
0
Nb

}
−

4
√

l2 + R2

4
√

l2 + r2

Nb∑
n=1

Re

[
±eiχn

e∓ξ − eiχn
+

l

24

(
3r2 − 2l

(l2 + r2)3/2

+
3R2 − 2l

(l2 + R2)3/2

)
ln(1 − eξ+iχn)

])
, (11)

where

eξ =
r
(
1 +

√
1 + R2/l2

)
exp

(√
1 + r2/l2

)
R

(
1 +

√
1 + r2/l2

)
exp

(√
1 + R2/l2

)
(unfortunately, this expression was printed with an error in articles by Fukumoto &
Okulov 2005 and Okulov & Sørensen 2008a, 2008b). Here we use notations ‘±’ and
‘{: }’, in which the upper sign or symbols in brackets correspond to r <R and the
lower to r � R. The velocity component in the χ-direction is given as (Okulov 2004)

uχ = uθ − r

l
uz. (12)

Introducing the azimuthally averaged induced axial velocity as 〈uz〉θ = (
∫ 2π

0
uzdθ)/2π,

from (8) we get

〈uz〉θ = 0 for r > R and 〈uz〉θ =
NbΓ

2πl
≡ const for r < R. (13)

Note that the dimensionless averaged induced axial velocity in the wake (0 < r < R),
which is identical to the total axial wake interference factor a, takes the same constant
value

aU∞ ≡ 〈〈uz〉θ〉
0<r<R

=
NbΓ

2πl
. (14)

The vortex system also includes a rectilinear hub vortex of strength −NbΓ , resulting
in a simple formula for the additional induced velocity that only consists of the
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circumferential component

vθ = −NbΓ

2πr
. (15)

Defining the azimuthally averaged azimuthal velocity induced by the helical multiplet

as 〈uθ〉θ = (
∫ 2π

0
uθdθ)/2π, and combining (9) and (15), we get

vθ |r=R = − 〈uθ〉θ |
r=R

. (16)

To eliminate the singularity of the induced velocity field in the vicinity of the vortex
filament, the vortex system is represented by a set of helical vortices with finite core.
For an unexpanded wake originating from a rotor with infinitely many blades, the
convective velocity of the vortex system equals half the averaged induced axial velocity
in the wake. This is sometimes referred to as the ‘roller-bearing analogy’. Although
this approximation cannot be rigorously justified for a vortex system consisting of a
finite number of vortices, we employ the same analogy by assuming that the helical
vortices are transported with a relative axial speed, υ , that corresponds to half the
averaged induced velocity:

υ =
1

2
a
(R + ε)

R
, (17)

where a correction of small expansion of the cross-section of the wake is made in
order to include the radius ε of the vortex cores. Thus, the vortices are assumed to
translate in the bi-normal direction to the helical axis of the tip vortices with the
velocity ub (figure 2a):

ub ≡ υcosΦ =
a(R + ε)

2R
cosΦ ≡ a(R + ε)

2R

R√
R2 + l2

. (18)

The problem of determining the induced equilibrium motion of a multiple of helical
vortices in an unbounded domain was solved by Okulov (2004), but here we will use
a more suitable notation introduced by Okulov & Sørensen (2007). The motion of
the tip vortices in the χ-direction can be described by (2.13) of Okulov & Sørensen
(2007) in the form

4πR

Γ
uχ (σ ) ≡ ūχ (σ ) = −

√
1 + τ 2

τ
− Nb

τ 2
+

1

τ (1 + τ 2)1/2

×
(

ln
σNb(1 + τ 2)3/2

τ
+

1

4

)
− τ

(1 + τ 2)7/2

(
τ 4 − 3τ 2 +

3

8

)
ζ (3)

N2
b

, (19)

where τ = l/R and σ = ε/R are the non-dimensional pitch and radius of the vortex
core, respectively, and ζ (3) = 1.20206. . . is the Riemann zeta function. Introducing
the bi-normal velocity component, ub, as

ub = −uχ

l√
R2 + l2

, (20)

the conditions for equilibrium motion of the far wake are now determined in
accordance with the ‘roller-bearing analogy’ of (18). Finally, for this wake motion the
dimensionless radius σ of the tip vortex core must satisfy the equation

ūχ (σ ) = −Nb

τ 2
(1 + σ ). (21)

For any given value of pitch l and number of rotor blades Nb, we compute the radius
of the tip vortex core by solving (21). Figure 3(a) shows the ‘total’ core size, which is



502 V. L. Okulov and J. N. Sørensen

0.4

N
b 
ε
/R

0.2

0.5G

l = 0.1

l = 0.2

l = 0.5

l = 1.0

r/Rh/R

1.0

00 5

2

1 3

2ε

4ε

R+εh

6εNb

4

10 0.5 1.0

(a) (b)

Figure 3. (a) Joukowsky rotor. The vortex core radius for equilibrium motion of tip vortex
multiplet as a function of helical pitch for different numbers of blades (here and hereby in
the next figures, the number on the solid line curves refer to the number of blades); dotted
line indicates asymptotic behaviour of the core radius for small pitch and the sketch shows
the helical tip vortices representing the limit case of the wake. (b) Betz rotor. Examples of
Goldstein function for three blades and different values of helical pitch.

equal to the vortex core radius multiplied by the number of blades, as a function of
the tip vortex pitch for different number of blades. It may be noted that the limit of
small pitch has the same asymptote for all number of blades and the ‘total’ core tends
to zero faster than the pitch with a fixed ratio h/Nbε =6. This implies that the distance
between the tip vortices, independent of the value of the pitch, is always greater than
4 core radii, as depicted in figure 3. This also implies that it is impossible to reach
a dense cylindrical vortex surface as used in the actuator disk theory. In the other
limit, when the pitch tends to infinity, the vortex core disappears, which shows that an
equilibrium vortex multiplet motion is achieved when the vortices become rectilinear.

The axial velocity field induced by the tip vortices can subsequently be determined
in all points of the Trefftz plane because we have defined the finite radius of the
tip vortex core by the ‘roller-bearing analogy’. The velocities outside the vortices are
determined by (8) and inside the vortex cores by taking the average value of the
velocity on the boundary of the vortex cores. The axial velocity, made dimensionless
with the azimuthally averaged induced axial velocity 〈uz〉θ of (13) in the n-blade
direction (θ = 2πn/Nb, z =0), takes the form:

ũz

(
r,

2πn

Nb

)

=
1

aU∞

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uz

(
r,

2πn

Nb

)
if r < R − ε and r > R + ε,

R + ε − r

2ε
uz

(
R − ε,

2πn

Nb

)
− R − ε − r

2ε
uz

(
R + ε,

2πn

Nb

)
if R − ε < r < R + ε.

(22)

From (14), we get the following relation between the bound circulation and the
interference factor:

NbΓ = 2π laU∞. (23)
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From simple geometric considerations in the rotor plane (figure 2a), using (16) and
(17), the angular pitch is given as

tan Φ|r=R =
U∞ − |uz0

|r=R

Ω0R + |uθ0
|r=R − |vθ0

|r=R

=
U∞(1 − υ)

Ω0R
=

U∞
[
1 − 1

2
a(1 + σ )

]
Ω0R

= τ ≡ l

R
.

(24)

Equation (24) can be also written as

Ω0l = U∞ − 1
2
aU∞(1 + σ ). (25)

Inserting (6), (22), (23) and (25) into (3), the power can be determined from the
following integral:

P = ρ πR2 U 3
∞a

(
1 − a

2
(1 + σ )

) (
1 − a

∫ 1

0

ũz(x, 0) x dx

)
. (26)

Performing the integration and introducing the dimensionless power coefficient (4),
we get

CP = 2a
(
1 − 1

2
a J1

) (
1 − 1

2
a J3

)
, (27)

where J1 = 1 + σ and J3 = 2
∫ 1

0
ũz(x, 0)xdx. For a given helicoidal wake structure,

the power coefficient is seen to be uniquely determined, except for the parameter a.
Differentiation of CP with respect to a yields the maximum value, CP,max , resulting in

a(CP = CP,max) =
2

3J1J3

(
J1 + J3 −

√
J 2

1 − J1J3 + J 2
3

)
. (28)

4. Solution of the Betz rotor
To compare the efficiency of the Joukowsky rotor with the Betz rotor, we here

outline the main points of the derivation of the aerodynamics of the Betz rotor (for
more details we refer to Okulov & Sørensen 2008a). In this model, which is based on
Lanchester–Prandtl wing theory, the vortex strength of the lifting line varies along
the blade span, following the so-called Goldstein distribution. This results in a vortex
sheet that is continuously shed from the trailing edge (figure 1b). Betz (1919) showed
that the ideal efficiency is obtained when the distribution of circulation along the
blade produces a rigidly moving helicoidal vortex sheet with constant pitch, h, that
moves downwind (in the case of a propeller) or upwind (in the case of a wind turbine)
in the axial direction of its axis with a constant velocity U∞(1 ± w). ‘The associated
vortex system’ to the wake consists of a regular helical sheet extended to infinity in
both directions. Denoting the angle between the vortex sheet and the Trefftz plane as
Φ (see figure 2b), the pitch is given as

h = 2πr tan Φ or l/r = h/2πr = tan Φ, (29)

where r is the radial distance along the sheet. Since the sheet is translated with
constant relative axial speed wU∞, the induced velocity comprises only the component
wU∞ cos Φ that is ‘pushed’ normal to the screw surface (figure 2b). The axial and
circumferential velocity components uz and uθ induced by the infinite sheet at the
sheet itself are therefore given as

uθ = wU∞ cosΦ sin Φ and uz = wU∞ cos2 Φ. (30)
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From simple geometric considerations these equations are rewritten as

uθ = wU∞
xl

l2 + x2
and uz = wU∞

x2

l2 + x2
, (31)

where x = r/R is the dimensionless radius.
Goldstein (1929) was the first who found an analytical solution to the potential

flow problem of the moving ‘associated vortex system’ consisting of an infinite helical
vortex sheet. In his model a dimensionless distribution G(x, l) of circulation was
introduced as follows:

NbΓ (x, l) = 2πl wU∞G(x, l). (32)

Using infinite series of Bessel functions, Goldstein (1929) succeeded in obtaining an
analytical solution to the problem, but for Nb = 2 and 4 only. For any given value of
the wake pitch l and number of rotor blades Nb, the Goldstein circulation function
G(x, l), shown in figure 3(b), has been determined by Okulov & Sørensen (2008a,
2008b).

To compute the power coefficient, we employ the same procedure as outlined in the
previous section, that is we integrate (3) using (6), and the lift distribution in (32). In
addition to this, from geometric considerations in the rotor plane (figure 2b), using
(29) and (30), the angular pitch is given as (a derivation of this relation is shown in
the Appendix)

tan Φ =
U∞ − 1

2
uz

Ω0r +
1

2
uθ

=

U∞

(
1 − 1

2
w

)
Ω0r

=
l

r
. (33)

Equation (33) can also be written as

Ω0l = U∞
(
1 − 1

2
w

)
. (34)

Inserting (31), (32) and (34) into (3), the power can be determined from the following
integral:

P = ρπR2U 3
∞w

(
1 − w

2

) ∫ 1

0

2G(x, l)

(
1 − w

2

x2

x2 + l2

)
x dx. (35)

Performing the integration and introducing the dimensionless power coefficient (see
(4)), we get

CP = 2w
(
1 − 1

2
w

) (
I1 − 1

2
wI3

)
, (36)

where

I1 = 2

∫ 1

0

G(x, l) x dx and I3 = 2

∫ 1

0

G(x, l)
x3 dx

x2 + l2
.

The coefficients I1 and I3 are usually referred to as the mass coefficient and the
axial energy factor, respectively. For a given helicoidal wake structure, the power and
thrust coefficients are seen to be uniquely determined, except for the parameter w.
Differentiation of CP (see (36)) with respect to w yields the maximum value, CP ,max ,
resulting in

w(CP = CP,max) =
2

3I3

(
I1 + I3 −

√
I 2
1 − I1I3 + I 2

3

)
. (37)
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Figure 4. Power coefficients, CP , of an optimum rotor as a function of tip speed ratio and
number of blades. (a) Joukowsky rotor and (b) Betz rotor.

5. Results and discussion
In the following we present some representative results from the new model. To

compare the performance of rotors of constant circulation (Joukowsky rotor) with
rotors optimized using the Goldstein circulation distribution, we show results from
both models. To compare the efficiency of the two rotor concepts it is needed to use
some unambiguous parameters. As usual in rotor aerodynamics, we employ the axial
interference factor a and the tip speed ratio λ0. However, since a does not appear
explicitly in (36) and (37) and λ0 does not appear explicitly in any of the equations,
it is needed to derive some additional relations. In the case of a Betz rotor, λ0 is
connected to the helical pitch l and the generic parameter w through (34), resulting
in the following relationship:

λ0 ≡ Ω0R

U∞
=

R

l

(
1 − w

2

)
. (38)

For a Joukowsky rotor a similar dependency can be found from (25):

λ0 ≡ Ω0R

U∞
=

R

l

(
1 − a

2

(
1 +

ε

R

))
. (39)

Figure 4 presents the optimum power coefficient of both models for different number
of blades as a function of tip speed ratio. From the plots it is evident that the
optimum power coefficient of the Joukowsky rotor for all number of blades is larger
than that for the Betz rotor. The difference, however, vanishes for λ → ∞ or for
Nb → ∞, where both models tend towards the Betz limit.

In the Betz model, an expression for the axial interference factor can be obtained
by combining (8) and (32) as

a = w

∫ 1

0

G(x, l) dx. (40)

In figure 5, we display the axial interference factor of the two rotors as a function
of tip speed ratio and number of blades. Comparing the two plots, it is readily
seen that the Betz rotor for the same tip speed ratio decelerates the flow less than



506 V. L. Okulov and J. N. Sørensen

0.33

0.22

0.11

0

0.33

0.22

0.11

05 10 15

λ0 = Ω0R/U∞
5 10 15

λ0 = Ω0R/U∞

(a)

a

(b)

3
2

4

1 3
2

4

1

Figure 5. Axial interference factor as a function of tip speed ratio and number of blades.
(a) Joukowsky rotor and (b) Betz rotor.
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Figure 6. Power coefficient, CP , of an optimum rotor as a function of axial interference
factor and number of blades. (a) Joukowsky rotor and (b) Betz rotor.

the Joukowsky rotor. As a consequence, if we employ the axial interference factor
as independent variable, an optimum Betz rotor can produce more power than a
Joukowsky rotor under the same deceleration of the wind (see figure 6).

6. Conclusion
An analytical model has been developed for a rotor with a finite number of blades

and constant circulation (‘Joukowsky rotor’). The method is based on an analytical
solution to the problem of equilibrium motion of a helical vortex multiplet in a far
wake. The vortex system behind the rotor is represented by a set of helical vortices
with finite core to eliminate the singularity of the induced velocity field in the vicinity
of each filament. The finite core radius is determined in the framework of an ideal
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fluid by assuming that the relative wake motion is governed by a constant axial speed
equal to half the averaged induced velocity in the wake. The main achievement of the
model is that it eliminates the singularity of the solution at all operating conditions.
In contrast to earlier models, the new model enables for the first time to determine the
theoretical maximum efficiency of rotors with constant circulation and an arbitrary
number of blades.

Optimum conditions for finite number of blades as a function of tip speed ratio
were compared for two models: (a) Joukowsky rotor with constant circulation along
the blade, and (b) Betz rotor with circulation given by Goldstein’s function. For all
tip speed ratios the Joukowsky rotor achieves a higher efficiency than the Betz rotor,
but the efficiency of the Betz rotor is larger if we compare it for the same deceleration
of the wind speed.

Appendix
The relation given in (33) can be deduced as follows:

tan Φ =
sinΦ

cos Φ
=

U∞ − 1

2
uz

Ω0r +
1

2
uθ

=

U∞

(
1 − 1

2
w cos2 Φ

)

Ω0r +
1

2
U∞w cosΦ sinΦ

⇒ Ω0r sinΦ +
1

2
U∞w cos Φ sin2 Φ = U∞ cos Φ

(
1 − 1

2
w cos2 Φ

)

⇒ Ω0r sinΦ = U∞ cosΦ

(
1 − 1

2
w(cos2 Φ + sin2 Φ)

)

⇒ tan Φ =
sinΦ

cos Φ
=

U∞

(
1 − 1

2
w

)
Ω0r

.

From which it follows that

U∞ − 1

2
uz

Ω0r +
1

2
uθ

=

U∞

(
1 − 1

2
w

)
Ω0r

.
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